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Abstract—With an unprecedented accuracy in numerous AI
tasks, convolutional neural networks (CNNs) are rapidly deployed
on power-limited mobile and embedded applications. Existing
mapping approaches focus on achieving high performance with-
out explicit consideration of power consumption, leading to
suboptimal solutions when power is considered in a subsequent
stage. In this context, there is an emerging need for power-
aware methodologies for the design of custom CNN engines.
In this work, a methodology is presented for modelling the
power consumption of FPGA-based CNN accelerators using
a high-level description of modules, together with a power-
centric search strategy for exploring power-performance trade-
offs within the CNN-to-FPGA design space. By integrating into an
existing CNN-to-FPGA toolflow, the proposed power estimation
method can yield a prediction accuracy of 93.4% for total system
power consumption. Furthermore, it is demonstrated that the
associated power-oriented exploration approach can generate
CNN accelerators with a 20.1% power reduction over a purely
throughput-driven design for AlexNet, maintaining the design’s
throughput.

I. INTRODUCTION

Driven by the recent successes of convolutional neural

networks (CNNs) and their diversity of applications, major

industrial companies have begun to integrate CNN models

within their products [1], prominently targeting mobile and

embedded applications. To execute CNN workloads without

the overhead of cloud offloading, on-device inference [1], [2]

is commonly employed. In this setting, the CNN computa-

tions are performed locally using the computational resources

of the device, with all data remaining local. Nevertheless,

battery-powered mobile and embedded platforms are typically

severely constrained in terms of their power budget [3]. In this

respect, power efficiency becomes a primary objective in the

deployment of CNNs on resource-limited settings.

A promising platform that balances high performance with

power efficiency are FPGAs [2]. The customisation capabil-

ities of FPGAs offer the opportunity to tailor the generated

hardware with respect to the given CNN and the available

power budget. The highly customisable aspect of FPGAs

creates a large design space for mapping CNNs on the device

and in turn allows for specific performance metrics to be

targeted explicitly. This work approaches the problem of map-

ping CNNs to FPGAs as a Design Space Exploration (DSE)

task, and utilises a power-modelling technique to rapidly

traverse the design space and yield power-efficient designs.

In particular, the main contribution of this work is a high-

level power-modelling technique tailored to CNN hardware

modules which enables the identification of power-efficient

designs during the DSE phase of CNN-to-FPGA toolchains.

II. BACKGROUND & RELATED WORK

A number of works have focused on the automated mapping

of CNNs to FPGAs [4]–[7]. By exploring the design space

within the constraints imposed by the platform, these tools

are able to target specific performance objectives. The existing

CNN-to-FPGA toolflows typically employ performance mod-

els, either using a roofline [8], [9] or graph representation

[4], [5], in order to estimate the attainable performance as

a function of the configurable hardware parameters and ex-

plore various candidate designs. A toolflow that demonstrates

significant flexibility with respect to the architectural space

is fpgaConvNet [4], [10]. The expressivity of fpgaConvNet’s

graph representation enables the description of diverse CNN

engines including both single computation engines and stream-

ing architectures [7]. In this respect, without loss of generality,

fpgaConvNet has been used as the backbone for this work.

Modelling of power consumption has been covered at

different levels of abstraction for FPGA-based designs [11]–

[14], where knowledge of the design as well as evaluation time

affect the model’s accuracy. Based on its level of abstraction, a

power model trades off predictive accuracy for generality and

speed of estimation. Alongside levels of abstraction, pattern-

dependence [15], [16] trades generality with accuracy.

Power and energy efficiency have been investigated in the

area of CNN accelerator design. Two prominent accelerators

with significant power and energy reductions are MINERVA

[17] and EYERISS [18]. MINERVA employs quantisation,

pruning and on-chip memory voltage scaling to reduce energy

consumption. EYERISS identifies off-chip memory accesses

as the primary source of excessive power consumption and as

such exploits the data-reuse patterns of CNN workloads with

the goal to decrease the memory transfers needed for weights,

feature maps and partial sums deterministically.

III. POWER CONSUMPTION MODELLING

Despite the extensive existing efforts in power consumption

modelling, there is still a gap between accuracy and estima-

tion speed when targeting CNN accelerators on FPGAs. To
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this end, a novel power modelling methodology is proposed

tailored to FPGA-based CNN systems. Our method overcomes

the limitations of existing tools and combines high accuracy

with fast estimation by exploiting two key observations: 1)
strong statistical patterns in the feature maps, and 2) parametri-

sation of commonly used CNN hardware modules.

A. Dynamic Power Modelling

With dynamic power being a significant source of power

consumption in FPGA-based CNN designs, the structure of a

typical CNN architecture and the characteristic propagation of

data through it is investigated first. Following the streaming

paradigm, each module in the CNN hardware mapping is

pipelined with data passing through the various modules

sequentially.

Fig. 1. Example of mapping a convolution module to hardware.

Alongside the high-level topology of the accelerator, each

of the modules is parametrised individually to enable a tun-

able level of parallelism. As an example, Fig. 1 shows a

parametrised convolution module. This diagram highlights the

operations and the parameters that govern them, showing how

high-level parameters can affect the hardware. In particular,

streams, rates, data-widths, and operations are given. All

modules within the fpgaConvNet framework are designed

using High Level Synthesis (HLS) tools and so are abstracted

from the hardware implementation. Therefore, in lieu of basic

hardware building blocks such as LUTs and DSPs, operations

are instead used to form the power model.

To start with, the dynamic power consumption for the CNN

design is expressed in terms of its hardware modules as

PD
total = Prouting +

∑

module∈M
PD

module (1)

where M is the set of instantiated hardware modules of the

CNN architecture, PD
module is the dynamic power consumed by

the particular module and Prouting is the power consumed by

the routing logic between the modules. Usually the amount

of resources used to implement each module is considerably

larger than the routing between modules. Thus, the module

power consumption dominates the routing logic and hence

Prouting can be omitted from the power estimation model. To

estimate the power of individual modules PD
module, a per-module

power model is derived as a function of the type, number and

organisation of operators within it, as given by Eq. (2).

PD
module =

fclk

2
· V 2

DD · r(input)

Nop∑

i=1

PD
op,i(parami) (2)

where fclk is the clock frequency, VDD is the supply voltage,

Nop describes the number of operators within the module

such as adders and multipliers, r(input) is the input rate for

the module and Pop,i(parami) describes the contribution of

the i-th operator to the power consumption of the module.

The rate r(input) also describes the output rate of each

preceding module in the hardware design. In a streaming-based

architecture, such as the one described in [10], the rates of each

module are propagated through the design.

A relationship can be derived between the operation’s

parameters and it’s overall dynamic power consumption, in

a similar fashion to the power factor approximation technique

[13], leading to the model given in Eq. (3).

PD
module =

1

2
fclk · V 2

DD · r(input)

Nop∑

i=1

ki ·Wi ·Ni · ri · si (3)

where Wi is the wordlength, Ni is the number of input

streams, ri is the processing rate of the i-th operator and

si is the switching activity entering the i-th operator. si is

found through statistical analysis of feature maps from a given

dataset. The coefficient ki is introduced in order to capture the

unknown relationship between the i-th operator’s parameters

and its power. With this approach, the power of the module is

modelled as the sum of the operator power, and scaled by the

rate at the input of the module. The value of ki is obtained

using a regression method based on empirical data of power

consumption to populate the per-module power models.

B. Static Power Modelling

To complement dynamic power estimation, the proposed

methodology includes a predictive model for static power

consumption. The foundation of the static power model is

based on the consumption of power through bias currents in

resources. This suggests a relationship between the resource

usage and static power consumption. Alongside operations,

variables also contribute to the static power consumption,

as they equate to instantiated hardware such as registers

and BRAM. The proposed model draws a linear relationship

between static power and resource usage for each of the

separate modules, and is described as

P S
module =

Nop∑

i

aTop
· Top,i +

Nvar∑

j

bTvar
· Tvar,j (4)

where Nop is the number of operations in the module, Top,i is

the type of operation for the i-th operation, Nvar is the number

of variables and Tvar,j is the variable type for the j-th variable.

Both aTop
and bTvar

are scalar coefficients for each variable

type and operation type. As a result, Eq. (4) captures the static

power contribution of each operation and variable used.

C. Memory Interface Modelling

The final aspect to the power estimation model is the

power consumption from off-chip memory accesses, which

contributes to the overall power consumption. This is due to

the fact that capacitances of data-lines from IO connections
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are significantly larger than on-chip routing capacitances. The

derived model is given in Eq. (5).

PDDR = kidle + kdynamic · fclk · V 2
DDR ·Nports ·Wdata · r · s (5)

where fclk is the clock frequency of the design, which is

typically less than the clock frequency of DDR, VDDR the

supply voltage of the DDR which drives the data lines, Nports

the number of memory ports used, Wdata the data width of

the memory port, r the rate of data into the design, and s the

average switching activity of the data entering. There are two

coefficients to this model: kidle describing the idle power of the

DDR, and kdynamic capturing the coefficient for the dynamic

power consumption from activity on the DDR’s data line.

Overall, the total power consumption is given by

P̃ =
∑

module∈M
PD

module +
∑

module∈M
P S

module + PDDR (6)

IV. POWER-CONSTRAINED OPTIMISATION

With a power-modelling methodology in place, power-

driven designs can be explored. Within the embedded space,

power is a crucial aspect, and characterising and limiting

power consumption can play a key role to the configuration

of the final design. To guide the space exploration towards

designs that comply with the available power budget, the

following optimisation problem is defined:

maximise
γ

T (γ)

subject to rsc(γ) ≤ rscAvail. , P̃ (γ) ≤ Pmax

(7)

where γ represents the current design point, T , P̃ and rsc
return the throughput in GOp/s, the power in watts and the

resource utilisation of the current design point, and Pmax is

the available power budget in watts. Under this formulation,

Eq. (7) provides an objective function for obtaining a high-

throughput design under power constraints.

V. EVALUATION

The proposed power estimation model is evaluated first for

the fpgaConvNet framework [10] with coefficients generated

for the Xilinx ZC702 board. The model is evaluated against

board-level power measurements for LeNet [19] and AlexNet

[20] CNNs, and comparisons of evaluation time are made with

existing power estimation tools. Finally, the power model is

incorporated into a DSE tool to expose power-efficient designs

within the fpgaConvNet framework.

A. Evaluation of Power Consumption Model

In this section, the accuracy of the developed power con-

sumption model is evaluated. This is investigated by selecting

four different designs for LeNet on ZC702. This board allows

the separate measurement of power for the programmable

logic (P PL) and off-chip memory (PDDR) through the power

management bus. Each hardware design is generated via

fpgaConvNet and run on the target FPGA at 125 MHz for

a batch size of 254 inputs with a 16-bit fixed-point precision.

Design T (fps) Rsc. (%) PPL (W) PDDR (W)
Actual Model Actual Model

1 59.06 14.84 0.1458 0.1889 0.6422 0.642
2 1475.89 24.85 0.2792 0.2187 0.6322 0.6421
3 4761.01 56.41 0.6192 0.6886 0.6436 0.6423
4 5234.95 57.11 0.6521 0.5638 0.6395 0.6423

TABLE I
BOARD-LEVEL MEASUREMENTS OF LENET ON ZC702

Table I lists the estimated and measured power, together with

the measured throughput and average resource utilisation.

In terms of power estimation, the power predictions lie fairly

close to the actual measured power on the target platform with

an average error of less than 18% across the four designs. In

the case of P PL, the accumulation of errors across individual

hardware modules contributes to the model’s small error, but

stays within 50 mW for designs 1 and 2 and below 100 mW

for 3 and 4. With respect to off-chip memory power, as all four

designs only use 16 bits of a single port, memory bandwidth

utilisation is low and hence PDDR is dominated by idle power,

leading to the little variation in both measured and estimated

PDDR across designs.

B. Comparison with Existing Power Estimation Tools

To evaluate all aspects of the proposed methodology, this

section presents a comparison with widely used vendor tools

for power estimation. Table II presents the comparison of our

method with the high-level Xilinx Power Estimator (XPE),

Vivado power estimation after synthesis and implementation

with (Vivado (saif )) and without (Vivado) activity information.

Tool Evaluation Time Error (%)

XPE <1 second 624.37
Vivado >30 minutes 559.86

Vivado (saif) >1 hour 5.01
Proposed solution <1 second 21.50

TABLE II
COMPARISON OF POWER MODELLING TOOLS

The proposed method overcomes the limitations of both the

high error of XPE and the large evaluation time of Vivado

(saif ). By offering rapid power estimation, the design space

can be traversed efficiently and many different alternative

designs can be explored. Furthermore, the low error allows

the proposed power consumption model to be used to guide

DSE towards power-efficient designs.

C. Impact of Estimation Accuracy on the Design Space

To visualise how the error between the model and measure-

ments affects the design space, the predicted and actual power

are plotted against latency for the first layer of AlexNet in

Fig. 2. The legend indicates the different designs that were

run, with the blue measurements indicating the model and the

red indicating the actual measurements. Parallel and sequential

conv refer to the amount of parallelism used for the dot-

product units in the convolution module. As shown in Fig.
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Fig. 2. Measured and predicted power for the 1st layer of AlexNet.

2, our model is able to predict power within 100 mW of error,

across a range of valid designs within the resource constraints

of the device. This figure highlights the existence of power-

efficient designs within the design space.

D. Design Space Exploration

Having demonstrated the accuracy of the power modelling

framework as well as the existence of power-efficient designs

within the design space, the optimiser is now evaluated on

its ability to identifying power-efficient designs. Initially, the

throughput-power design space is depicted in Fig. 3 by ex-

ploring an unconstrained throughput objective. This design

exploration is done for the ZC706 platform.

Fig. 3. DSE with a throughput objective for AlexNet on ZC706.

A clear pareto-optimal front can be seen, where average

power has a linear relationship with the throughput of the

design. An interesting observation is the occurrence of design

points on the same throughput plane, yet with larger average

power consumption. This indicates the existence of power-

efficient designs which achieve high throughput at a reduced

power consumption. For example, the highest throughput can

be achieved through a range of designs. However, the most

power-efficient yields a 20.1% power reduction over the most

power-consuming design.

VI. CONCLUSION

This paper presents a method of modelling the power

consumption of an FPGA-based CNN accelerator system from

a high-level description. This power model is then integrated

within a DSE-based optimiser to expose power-efficient de-

signs within a CNN-to-FPGA mapping framework. This work

brings power consumption to the forefront of the fgpaConvNet

framework, and promotes methods which can be used across

other frameworks. In this way, low-power implementations of

CNNs will be realisable for a host of platforms with harsh

power constraints.
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